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A model is proposed that leads to the scaled relation tp /�D=Ftp�Ra−Rac� for the development of convection
in a pure fluid in a Rayleigh-Bénard cell after the start of the heat current at t=0. Here tp is the time of the first
maximum of the temperature drop �T�t� across the fluid layer, the signature of rapidly growing convection, �D

is the diffusion relaxation time, and Rac is the critical Rayleigh number. Such a relation was first obtained
empirically from experimental data. Because of the unknown perturbations in the cell that lead to convection
development beyond the point of the fluid instability, the model determines tp /�D within a multiplicative factor
��Rac�HBL�, the only fit parameter product. Here Rac�HBL�, of the order 103, is the critical Rayleigh number
of the hot boundary layer and � is a fit parameter. There is then good agreement over more than four decades
of Ra−Rac between the model and the experiments on supercritical 3He at various heat currents and tempera-
tures. The value of the parameter �, which phenomenologically represents the effectiveness of the perturba-
tions, is discussed in connection with predictions by El Khouri and Carlès of the fluid instability onset time.
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Consider a pure fluid in a Rayleigh-Bénard cell after a
constant heat current q across the sample has been turned on
at the time t�0. The purpose of this paper is to address the
question of how the convection develops as a function of t
beyond the instability point of the fluid.

Recently experimental studies of convection in a
Rayleigh-Bénard �RB� cell were published for a pure
supercritical fluid, 3He, at several temperatures along its
critical isochore �1–3�. In the experiments, the temperature
drop �T�t� across the fluid layer was measured as a function
of t after the start of the heat current q. The measurements
included both the steady state temperature drop in the
convective regime, �T=�T�q ,��, with ���T−Tc� /Tc and
Tc=3.318 K the critical temperature, and also the transient
features. The latter were the time tp of the first peak in �T�t�
after the start of the heat current, the period tosc of the
damped oscillations in the �T�t� profile, and �tail, the
asymptotic relaxation time to the steady state. It was found
empirically that these characteristic times at the various val-
ues of � and q, scaled by the thermal diffusion relaxation
time �D���, collapse each on its respective “universal” curve
when plotted versus the Rayleigh number. For instance, it
was found that

tp/�D = Ftp�Racorr − Rac� , �1�

where Ftp is a function of the quantity in parentheses, and
similarly there were functions Fosc and Ftail for tosc and �tail.
In the limit of �=CP /CV	1, the diffusion relaxation time is
given by �D=L2 /4DT �4�. Here DT is the thermal diffusivity,
L is the layer height, and CP and CV are the specific heats at
constant pressure and volume. Also Racorr is the Rayleigh
number corrected for the adiabatic temperature gradient, as
defined in Refs. �1,2�, and Rac=1708 is the critical Rayleigh
number for a RB cell with a large aspect ratio. Comparison
of numerical simulations with experiments, both for the
steady state and for the transient results, was described in
Ref. �3�. In Ref. �5� the discrepancies for the time tp between

the simulations and experiments were studied by introducing
perturbations into the simulations. The purpose of these was
to imitate the noise or perturbations, present in the physical
system, which are needed to develop the instability. In the
simulations, various amplitudes of a spatially periodic tem-
perature perturbation, imposed along one of the parallel
plates of the RB cell, were tested. A small amplitude of
�0.5 
K produced a development of convection in a time
comparable to that in the physical system.

In this paper a simple model is presented which justifies
the scaling relation �1�, and where the predictions are con-
sistent with this empirical representation. Our model is based
on the assumption that a portion of the fluid first becomes
unstable at the time tHBL instab when the Rayleigh number of
the “hot” boundary layer �HBL� at the bottom boundary
reaches its critical value. The scenario is then as follows. The
fluid is kept at a constant average density in a Rayleigh-
Bénard cell of large aspect ratio and where the critical Ray-
leigh number of the fluid between two solid boundaries is
Rac=1708. The high thermal conductivity of the plates keeps
their respective temperatures homogeneous. Upon the start
of the heat current q at t=0, boundary layers form at both
plates. Through the “piston effect” �6,7�, the temperature of
the bulk fluid is homogenized after a characteristic piston
time t1=L2 / �DT��−1�2�.

The temperature drop �T�t� across the total fluid layer L
is the sum of the drops �T�t�HBL and �T�t�CBL across the
“hot” and the “cold” �CBL� boundary layers at the hot and
the cold surfaces of the plates. This is shown in Fig. 1 by
plots from numerical calculations first presented in Fig. 7a of
Ref. �8� for a thermal conductivity cell with the heat flowing
downward, or conversely for a RB cell in the absence of
earth’s gravity. These were extended by Zhong �9� to a cell
height L=0.106 cm used in the convection experiments of
Ref. �1�. From Fig. 1 it is seen that the temperature drops are
comparable, with the hot layer drop �T�t�HBL�t� the larger
one by �20%. The ratio �T�t�HBL /�T�t�CBL has been
checked in several plots similar to Fig. 1 at different values
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of � and was found to vary from �1 at �=0.01 to �2 at
�=0.14. There was no definite trend of this ratio with in-
creasing q at a given �. �See also Ref. �10�.� We then set

�T�t�HBL = �1 + ���T�t�/2, �2�

and use an average value of � � 0.2 ±0.1 taken for curves
calculated over the range of � between 0.01 and 0.14. Be-
cause � increases more rapidly for � above � 0.14, the �
values at higher � are not used in the analysis and the dis-
cussion below. The thickness of both boundary layers is seen
from Fig. 1 to be almost the same, and approximated �see
�7�� by lHBL� lCBL��DTt�1/2. We set

lHBL = A�DTt�1/2, �3�

where A is obtained by defining lHBL as the distance deter-
mined by 99% of the temperature drop from the wall to the
flat temperature profile in the central part of the fluid layer.
An average value of A=3.5±0.2 is then obtained from cal-
culated curves at various values of � between 0.01 and 0.14,
similar to those in Fig. 1.

Initially the fluid is then in the nonconvecting mode, and
the temperature drop across the fluid layer is given by �11�

�T�t� =
q


�DTt

�
�4 − 	�t1

t

1/2�, t 	 t1, �4�

where  is the fluid thermal conductivity. For large enough
heat currents, lHBL will reach a critical size, and is the
first boundary layer to become unstable at
t= tHBL instab. This is because the product lHBL

3 ��THBL, which
is proportional to the local Rayleigh number, is larger than
that for the cold boundary layer, as shown from the example
at �=0.02 at t=2 and 4 s in Fig. 1. The instability condition
for this layer is then �12,13�

Ra�HBL� =
glHBL

3 �P

DT�
	�THBL −

gT�PlHBL

CP

 � Rac�HBL� .

�5�

The second term in parentheses is the contribution of the
adiabatic temperature gradient. Here the local critical Ray-
leigh number Rac�HBL� corresponds approximately to the
condition “one rigid and one free bounding surface,” with
the predicted value 1100 �14�. This numerical value, ob-
tained for idealized conditions of two parallel flat surfaces,
might not strictly apply to the hot boundary layer, where the
upper boundary with the bulk fluid is not “free” nor sharply
defined. Its actual value might be of the order of 103, and this
implication is discussed in the result analysis below. Also �P
is the coefficient of isobaric thermal expansion, g the gravi-
tational acceleration, and � the kinematic viscosity. In a re-
cent paper, Accary et al. �15� have studied numerically in a
two-dimensional �2D� approximation the hydrodynamic sta-
bility of a supercritical fluid layer in a RB cell after the
bottom plate temperature was raised quickly by �T, with the
temperature of the top plate being kept constant. They found
that it was the hot boundary layer �labeled as the “active”
one� that became unstable first, which is consistent with the
assumption in the experimental conditions described above,
where a constant heat current is imposed at the bottom plate.

It is the purpose of this paper to estimate the time when
this instability has developed significantly into convection,
and which is represented by the time tp, the time of the first
peak in �T�t� when convection plumes are reaching the top
of the fluid layer, and to relate it to the Rayleigh number of
the whole fluid layer. Clearly, a quantitative estimation of tp
cannot be made, because the nature and amplitude of the
perturbations that lead to the development of convection for
t� tHBL instab are not known. The following ad hoc postulate,
to be discussed later in conjunction with the results, is now
made:

tp = � � tHBL instab, �6�

where � is a parameter representing phenomenologically the
effects from perturbations such as imperfections in the RB
cell, wall effects, etc. A further postulate is that � is the
same for all the experiments done in the RB cell filled with
supercritical 3He over a temperature range of about 0.6 K.
When the perturbation amplitude is negligible, �	1, and
the convection takes a long time to develop fully. This is
shown by numerical 2D simulations �5� for the example of
3He at �=0.2 and q=2.16�10−7 W/cm2 with cell aspect ra-
tio �=8 and L=0.106 cm, where convection takes 90 s to
become well developed when only the inherent noise of the
simulation code is present. In unpublished 2D numerical
simulations by Accary �16� with a different code but with the
same fluid parameters as in the experiments, and for �=8
and L=0.106 cm, the convection develops significantly after
120 s. Finally, in simulations by Amiroudine �17�, with the
same fluid parameters and cell height, but for an aspect ratio
of �=2, the peak of �T�t� occurred at tp=55 s. These times
are larger than in the experimental system with tp=30 s.
They are to be contrasted with tinstab=7 s for the whole fluid

FIG. 1. �Color online� The vertical temperature distribution in a
thermal conductivity cell with layer height L=0.106 cm at t=2 and
4 s, and for � � 0.02, and q=0.1 
W/cm2, as obtained from the
numerical calculations presented in Ref. �8�.
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layer with the same parameters as in the experiments, calcu-
lated from first principles by El Khouri and Carlès �18�. On
the other hand, when the perturbations are very strong, one
expects �→1, as tp decreases toward tHBL instab.

Under the experimental conditions for the data reported in
Ref. �3�, numerical estimates show that for times near and
above the HBL instability and for the values of � used, both
second terms in brackets of Eq. �4� and in parentheses of Eq.
�5� are small compared to the first ones, and henceforth are
neglected, which simplifies the calculations. Combining Eqs.
�1�–�6�, one has at the time of instability of the hot boundary
layer

Rac�HBL� =
2A3�1 + ��gDT�P

�2�1/2�
� tp

2 � q . �7�

It is convenient to express q in terms of the Nusselt number,
which is a function of the Rayleigh number of the fluid layer.
Once the instability has led to a fully developed convection
and steady state has been reached, the connection between
the heat current q and the temperature drop �T can be ob-
tained via the relation

Nucorr = Nucorr�Racorr� �8�

where Nucorr is the Nusselt number corrected for the adia-
batic temperature gradient �1,2�,

Nucorr =
qL/ − �Tad

�T − �Tad
, �9�

and

Racorr =
gL3�P

DT�
��T − �Tad� . �10�

Here qL /=�Tcond is the temperature drop across the
fluid layer for the conducting �nonconvecting� fluid with the
same heat current q, while �T is the measured steady
state temperature drop in the convecting state. Also
�Tad=gTL�P /CP, the contribution of the adiabatic tempera-
ture gradient over the sample height. In Eq. �8� the depen-
dence of Nu on the Prandtl number has been ignored, as it
was found to be small from the experimental data analysis
�1�.

For the steady state �T�q ,�� data we will use the results
from Ref. �1� in Fig. 6, which are the same as in Fig. 3�a� of
Ref. �3�, namely, where Nucorr�q ,�� is expressed by the con-
vection heat current jcorr, first introduced in Ref. �19� and
used in Refs. �1,3�:

jcorr = �Nucorr − 1��1 + acorr
* � �11�

with

acorr
* = �Racorr − Rac�/Rac, �12�

and hence

Nucorr =
1 + acorr

* + jcorr

1 + acorr
* =

qL/ − �Tad

�T − �Tad
. �13�

Because qL / is larger than �T, and we use values so that
qL /	�Tad, then

q = ��T − �Tad�


L

�1 + acorr
* + jcorr�

�1 + acorr
* �

. �14�

A two-term expression could satisfactorily fit the experimen-
tal data shown in Fig. 3�b� of Ref. �3� and is given by

jcorr = 1.3acorr
* + 0.287�acorr

* �1.45. �15�

Finally, combining Eqs. �7�, �14�, and �15�, and using Eq.
�12� and the diffusion relaxation time �D=L2 /4DT for the
condition �	1, one obtains

tp

�D
= ��Rac�HBL� �

B

�1 + 2.3acorr
* + 0.287acorr

*1.45�1/2 ,

�16�

where

B =� 8�1/2

RacA
3�1 + ��

. �17�

Hence effectively the model predicts tp /�D to be a function
of Racorr−Rac, in agreement with the empirical findings. The
result of Eq. �16� is shown in Fig. 2 where the fit parameter
is ��Rac�HBL�=166±25, given the values in Eq. �17� of
Rac=1708, A=3.5 for the amplitude of the hot boundary
layer width, and �=0.2. By using tentatively the value
Rac�HBL�=1100, a first reasonable guess as mentioned ear-
lier, one obtains �=4.7. Because the Rac�HBL� value might
well be not better known than its order of magnitude of 103,
this in turn leads to uncertainty in �, though their product is
quite well determined. The calculated curve extends over the
range 102� �Racorr−Rac��7�106 �20�. The fit is satisfac-
tory for �Racorr−Rac��5�10−2, but there is a systematic
deviation from the experimental data curve at lower values

FIG. 2. �Color online� The time of the first peak, tp, scaled by
the diffusive relaxation time �D, vs Racorr−Rac. The symbols rep-
resent the experimental data at various values of � as per Ref. �3�
and the solid line the predictions as expressed by Eq. �16� with the
fitting parameter �=4.5.
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of Racorr−Rac. We note that the data for these lower values
are predominantly associated with higher values of � where
DT has become large, low values of q, and where the HBL
and CBL are no longer well separated near tHBL instab. At that
time the instability becomes dominated by global modes in
the whole cell �scenarios 1 and 2 in Ref. �18�� instead of the
HBL �10�. The approximations made in this simple model
are then no longer justified, but it should be noted that the
scaling according to Eq. �1� is still followed by the collection
of experimental data. Hence tp�4.7� tHBL instab. For the ex-
ample of 3He along the critical isochore at �=0.1 for
q=6.22�10−8 W/cm2, the experimental value is tp�43 s.
Then one calculates tLBH instab= tp /��9.1 s. Within the un-
certainty of �, this is consistent with the instability time
predicted for the fluid layer from first principles �Ref. �18��
of tinstab=12 s. One further test example is at �=0.02 and
q=5.1�10−8 W/cm2. Here the predicted tinstab=14 s �18�.
This compares with tHBL instab�8.5 s, obtained from the ex-
perimental tp=40 s.

The satisfactory agreement of the scaled curve obtained

from the simple model and the experimental data—except
where indicated—seems to justify the postulate made in Eq.
�6� relating the time tp and tHBL instab. The fit parameter �
can be interpreted as a phenomenological measure of the
effectiveness of the perturbations in the fluid cell used in the
experiments: The larger the value of �, the smaller their
effectiveness in developing convection. Of course, one ex-
pects � to be dependent on the cell configuration, aspect
ratio, roughness, and alignment of the horizontal plates and
vertical boundaries, etc.
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